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Abstract

A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation
from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma
transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including
as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made
feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron
acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear pre-
dictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both
turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a suffi-
ciently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the
presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number ðMp � 1Þ of the poloi-
dal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial
electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels
particularly strongly in a large aspect ratio tokamak at low plasma current.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Large-scale kinetic simulations of toroidal plasma dynamics based on first principles are called for in inves-
tigations on such transient transport mechanisms like Low (L) to High (H) confinement transport barrier for-
mation or Edge Localized Modes (ELM) at the edge plasma, Internal Transport Barrier (ITB) formation in
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the core plasma, or intermittent turbulence in magnetic fusion devices. Because of rapid or strong restructur-
ing in the particle distribution function f ðx; v; tÞ and in the EM field, often contemporary with such transients,
full f kinetic calculation is a necessity in such cases. First full f guiding-center particle simulation of the evo-
lution and equilibrium of the neoclassical flows was presented in [1–3], where the method of one-dimensional
ion polarization equation to solve for the flux-surface averaged radial electric field was introduced. In the fore-
mentioned works, the role of neoclassical mechanisms in the L–H transition was investigated and the effect of
edge boundary and steepness of density and temperature profile on the magnitude of the radial electric field
was evaluated. To obtain a complete picture of the transport barrier formation, one needs to incorporate tur-
bulence into such a full f guiding-center simulation by inclusion of a three-dimensional (3D) solver for the EM
field.

Following early full f electrostatic particle-in-cell simulations of turbulence in tori [4–6], which at that time
were mostly done with an unrealistic electron–ion mass ratio and for a single toroidal mode number at a time,
gyrokinetic (GK) model for averaged ion motion was developed [7] to eliminate the costly computing effort in
following the particle Larmor orbits. By an examination of ion density response to a varying electrostatic field,
the system of guiding center equations involving no polarization drift and having a modified (3D) Poisson
equation which expresses an explicit response of ions to velocity phase fluctuations and first-order modifica-
tion of magnetic moment were constructed and used to evolve the particle coordinates and field. In [8], the
formalism in [7] has been developed to an energy-conserving set of gyrokinetic equations with Hamiltonian
structure and to include electromagnetic fluctuations. Beyond the standard GK ordering, this set may allow
[9] fluctuation frequencies of the order of ion gyrofrequency and for long wavelengths even perturbation
amplitudes bringing the E� B drift of the order of ion thermal velocity. Although not yet universally proven,
it is generally believed that the energy-conserving set with gyrokinetic ordering can be used for studies of long-
time evolution of f far from its initial state. Here the problem, in particular in the presence of turbulence, is
whether the high order nonlinearities neglected in the gyrokinetic ordering may in the very long time evolution
contribute with noticeable effects. Also, the role of higher order gyrokinetic terms in evaluating the gyrovis-
cosity effects on the neoclassical equilibrium has not yet been fully resolved [10]. In the following, these prob-
lems are not considered and the evolution of f is studied within the standard low order gyrokinetic terms.

After full f particle simulation tests [11] of the method in [7], the numerical implementation of GK method
was further strengthened by a so called delta f technique [12], where only perturbed quantities are represented
by simulation variables. With the delta f approach, GK plasma simulation for toroidal magnetic fusion
devices has since then become a standard tool for turbulent transport analysis under conditions of weak per-
turbations (mostly in the core plasma) [12–21]. Fluid, Vlasov and particle approaches are used, the latter two
being advantaged by a more precise kinetic description. Due to the need of full f kinetic simulations, a number
of such gyrokinetic Vlasov and particle-in-cell codes based on the formalism in [8] have recently been devel-
oped [22–26]. A particular problem in the numerical implementation of gyrokinetic full f calculation is in the
treatment of nonlinearities. Among others, this involves the way how to sample implicitly the integrated ion
charge density response to velocity phase fluctuations and first-order modification of magnetic moment and
how to sample the electron charge density response to acceleration parallel to ambient magnetic field by
the electric field (electron parallel nonlinearity). In other words, the question arises how to consistently con-
struct the coefficient matrix for the GK Poisson or Ampère equation with evolution of f. Here, a complicated
integral of a differential operator on the product of f and the field potential is incorporated. In all previous
works, this problem has been circumvented by taking a given fixed Maxwellian f ¼ f0 in the construction
of the coefficient matrix for the GK Poisson equation. This is naturally the right procedure in delta f approach
where only small deviations from the initial f0 are considered, but for the full f simulation such a procedure is
not acceptable.

Various techniques for dealing with the kinetic and non-adiabatic electrons in gyrokinetic particle codes
have been developed [27–30] and have been applied in many of the previously mentioned codes. Common
to these methods are approximations where part of the distribution function (usually untrapped electrons)
is treated either analytically (adiabatic model) or in fluid moment expansion. With these methods, also the
well-known problems [29] in resolving the electron current contribution to the right-hand side of the Ampère
equation have been to a large extent solved. In Eulerian delta f continuum codes like GYRO, GS2, and GENE
[15,16,32] the remedy is to ensure a term-by-term cancellation of the large terms in the electron current,
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normally accomplished by unifying the discretization scheme for the different terms. These continuum codes
have become particularly powerful in the studies of electrostatic and electromagnetic turbulence in experi-
ments. However, the full f treatment of the electron parallel nonlinearity has not been addressed in delta f

codes.
Recently, Eulerian full f methods to solve the gyrokinetic Vlasov equation have been introduced for the

turbulence problem by inclusion of the polarization drift in the characteristics of the Vlasov equation and
by using an unmodified Poisson equation to solve for the fields [33]. With this method using adiabatic elec-
trons, although still in slab geometry, the complication in updating the coefficient matrix in the Poisson equa-
tion is naturally avoided. By explicit inclusion of the polarization drift in the gyrocentre motion, important
effects have been demonstrated for very steep gradients in plasma pressure, as for the tokamak edge plasma
[34,35]. Stimulated by Manfredi [33] Sosenko et al. [36] introduced appropriate GK equations for nonlinear
perturbations within the standard GK approximations using an asymptotic theory of charged particle motion
in an electrostatic field based on Krylov–Boholiubov averaging method. Here, it was found that the Poisson
equation does not remain unmodified when polarization drift is included explicitly in the gyrocentre motion.
In spite of this caveat, this model seems to provide an attractive technique for the treatment of the nonlinearity
in the ion polarization and in full f realization of simulations.

In the present work, we will follow the work in [36] and describe an implicit computational GK particle
solution method for the full f electrostatic plasma quasineutrality. The ion density change by polarization drift
and electron density change by the parallel electron acceleration are sampled directly from the particle gyro-
centre motion in terms of the unknown electrostatic potential at each time step. Being thus consistently full f,
the present nonlinear particle method should provide a useful approach for such global and dynamic transport
phenomena where strong restructuring in the particle distribution function f ðx; v; tÞ and in the EM field take
place. As the ion polarization drift is included in the ion orbit motion, and is not treated in an integrated fash-
ion separately from other drifts, the present approach allows nonlinear interaction of the polarization drift
with other drifts present. The adopted technique for the implicit treatment of the charge density perturbation
by ion polarization and electron parallel nonlinearity is based on the direct implicit time integration method of
the particle acceleration in the electrostatic field developed earlier for unmagnetized plasmas [37].

A full f nonlinear 5D (two velocity and three configuration space coordinates) gyrokinetic particle-in-cell
code ELMFIRE implementing the GK method in [36] and involving direct implicit treatment of the ion polar-
ization and electron parallel nonlinearity is here described elaborately. The formulation and the equations to
be solved with adopted orderings are introduced in Section 2. The algorithms for the implicit methods are
explained in Section 3. Other important features of the code and an analysis of the noise ensuing from the
finite number of simulation particles is presented in Section 4. This Section discusses the initialization for
the finite ion orbits in a tokamak configuration, particle tracking, sampling and interpolation methods, binary
collision method, boundary conditions and replacement of lost particles at boundaries, the adopted magnetic
background as well as the overall performance of the code. The convergence issues and the validation of the
code with respect to linear growth and frequency of the ion temperature gradient mode instabilities and bench-
marks against turbulence saturation and neoclassical effects (where proper treatment of kinetic electrons is
important) are given in Section 5. The developed code is applied for a global transport analysis in an FT-2
tokamak plasma (Fisichiskii Tokamak-2, Ioffe Institute, St Petersburg) [38] having lower hybrid (LH) ion
heating. The transport coefficients and electrostatic field together with the density and temperature profiles
are solved for the heated plasma and a qualitative comparison with some representative experimental data
is presented in Section 6.

2. Nonlinear gyrokinetic equations in toroidal geometry

The gyrokinetic Vlasov–Poisson equations (with the collision term Cðhf iÞ) solved by the present method
and based on the theory in [36] using the guiding-centre transformation x ¼ Rþ b� ðv? � dR=dtÞ=X in an
inhomogeneous plasma are
ohf i
ot
þ dvk

dt
ohf i
ovk
þ dR

dt
� ohf i

oR
¼ Cðhf iÞ ð1Þ
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Here, UðxÞ is the electrostatic potential at the position x, hf iðR; l; vkÞ ¼ ð2pÞ�1 R f ðx; vÞdðx� R� qÞdxda is
the distribution function of ion guiding centers, l ¼ v2

?=2B is the lowest order adiabatic invariant (i.e., mag-
netic moment), dv ¼ ðB=2pÞdðRþ q� xÞdRdldvkd/ denotes the velocity phase space differential, q; m are the
ion charge and the mass, respectively, and B ¼ Bb is the magnetic field with the unit vector b. The gyroaverage
over the ion Larmor rotation is denoted by h::i, which for the potential is given by
hUiðR; lÞ ¼ ð2pÞ�1 R UðxÞdðx� R� qÞdxda. In evaluating the gyroaverage, an approximative relation
x ¼ Rþ q compatible with the GK ordering is adopted with R denoting the position of the guiding-center
and q ¼ b� v?=X is the ion Larmor radius and X the ion Larmor frequency. The variables vk and v? denote
the ion parallel and perpendicular velocity components, respectively. The velocity differential dv is defined
keeping fixed x, i.e., the phase angle / runs around x. On the other hand, in the gyroaverages the phase angle
a runs around the guiding-center R.

The GK formalism was derived within the standard GK ordering, i.e., x=X � q=L � E?=Bv? � �� 1,
where x denotes the characteristic angular frequency of the perturbation, L describes the scale length of gra-
dients in unperturbed distribution and background magnetic field, and E? is the magnitude of the perpendic-
ular component (with respect to the magnetic field) of the electric field perturbation. The ion density
�niðxÞ ¼

R
hf iðR; l; vkÞdv is obtained from the gyro-orbit around the ion guiding-center coordinates that are

advanced with the polarization drift included. fi denotes the ion distribution function and neðxÞ is the electron
density at x as obtained within the drift-kinetic approximation from the guiding-center positions of the elec-
trons. e is the elementary charge and e0 is the vacuum permittivity. The Laplacian r2U term has been
neglected in the gyrokinetic Poisson equation. Summation over all ion species is implied in Eq. (2).

The equations for the gyrocentre motion of all particle species are given by
dR

dt
¼ vkbþ

1

B�
b� ml

q
rBþ

mv2
k

q
b � rbþrW

" #
� 1

XB
drhUi

dt
ð3Þ

m
dvk
dt
¼ � bþ mvk

qB�
b� b � rb

� �
� ðmlrBþ qrWÞ; ð4Þ
where the renormalized potential is given by
W ¼ hUi � ðq=2mBÞ
X
n6¼0

ojUnj2

ol
þ iB

nX2
rUn �rUH

n � b̂
" #

; ð5Þ
where Un ¼ ð1=2pÞ
R

daeinaUðR; l; aÞ ðhUi ¼ U0Þ with n in the sum running all integers except 0, and denota-
tion with i for an imaginary number and q for complex conjugate have been adopted. The nonlinear terms
introduce the ponderomotive effects for large field perturbations, but their effects are not considered in the
present work. Note that in obtaining the ion polarization drift, the potential is evaluated from hUi. For elec-
trons, a drift-kinetic approximation is adopted which is obtained by the replacement hUi ¼ UðRÞ. The polar-
ization drift is neglected for electrons. B� ¼ B�bþ ðmvk=qÞb� b � rb with B� ¼ Bþ ðmvk=qÞb � r � b arise
from the well-known Morozov–Soloviev [39] form of the guiding-centre motion. This second-order parallel
drift correction is introduced strictly to preserve the Hamiltonian character of motion. Correspondingly,
dv ¼ ðB�=2pÞdðRþ q� xÞdRdldvkd/.

Eqs. (1)–(5), agree with the standard gyrokinetic equations [8] in the electrostatic limit except for the explicit
introduction of the polarization drift into the present gyrocentre equations of motion (the last term on the
right hand side of the Eq. (3)) and for the appearance of the second term on the left-hand side of the gyroki-
netic Poisson equation (2). The original equations based on Krylov–Boholiubov averaging were derived in [36]
for a homogeneous plasma, and it was shown there that the introduction of the guiding-centre transformation
x ¼ Rþ b� ðv? � dR=dtÞ=X brings the second term on the left-hand side of Eq. (2) and adds the polarization
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drift into the standard gyrokinetic equations given in [8]. After some straightforward but tedious algebra, one
can show [40] that these same modifications apply also in the case of an inhomogeneous plasma so that Eqs.
(1)–(5) result in such a case for the transformation x ¼ Rþ b� ðv? � R=dtÞ=X. On the other hand, using the
transformation x ¼ Rþ b� v?=X the standard equations were reproduced in [36] with this new averaging
technique. Also the canonical structure was constructed in the case of both transformations. Note that the
Hamiltonian correction is not accounted for the polarization drift terms as these are higher order in the gyr-
okinetic ordering than the other drifts.
3. Direct implicit method for ion polarization and electron parallel nonlinearity

Before proceeding in presenting the overall (Section 3.1) structure of the numerical code, it is described how
the direct implicit integration method [37] is applied in constructing the charge density responses to ion polar-
ization drift and magnetic moment tremblings and to the electron acceleration along the magnetic field.

3.1. Ion polarization

In order to solve Eq. (2), one must either fix (or guess) the average ion distribution hf i and its gradients
inside the integrals on the left hand side of equations, or construct the integrals directly from the full f particle
simulation together with the solution of the gyrokinetic equation for the potential U. The latter method was
first time used in [41] for the gyrokinetic Poisson equation given in [7], while in other gyrokinetic works using
the standard equations, hf i has been fixed (usually a Maxwellian distribution has been used as a guess). The
problem in direct implicit numerical construction of

R
. . . ohf i=oldv is that this expression can not be trans-

formed without severe complications to the form
R

. . . hf idv. The latter form is required for direct sampling of
the integral from particle coordinate data.

In Eq. (2), in contrast to the standard gyrokinetic Poisson equation, the velocity phase space integral on the
left-hand side is of higher order in j2 ¼ ðk?qÞ2. Here, k? characterizes the wavenumber in the perturbation
modes perpendicular to the magnetic field. Partly due to this j dependence, the integral has not dominant role
in determination of the saturated state of turbulence or mode spectrum. Thus, one may here resort to a less
accurate integration method where one constructs ohf i=ol (and similar spatial derivatives of hf i) separately
from U by statistically collecting the particle coordinate information inside appropriate regions around x. The
distribution function and its gradients collected statistically in this way for the phase space grid cells can then
be used for approximation of the integrals and the coefficient matrix of the Poisson equation. With a reason-
able amount of simulation particles or grid cells, this method is statistically too inaccurate to be used for the
corresponding integral in the standard gyrokinetic Poisson equation, where the integral has a dominant role in
turbulence saturation.

In order to avoid complications in solving Eq. (2) arising from the smallness of its left hand side, the per-
turbation in ion density �niðxÞ by the ion polarization drift velocity vp ¼ ð1=XBÞdhEi=dt is also calculated dur-
ing simulation. This direct calculation is made implicit in E by evaluating the change in the ion polarization
density d�npk at a cell j by the k0th ion polarization shift ds ¼ ð1=XBÞðhEi � hEmiÞ during the time step dt as
d�npkðjÞ ¼
1

XBdV j

X
i

X
p

X
l

wi½fxijalUpl þ fyijblUpl� �
1

XBdV j

X
i

½hEm
x if m

xij þ hEm
y if m

yij�; ð6Þ
where the gyroaveraged electric field hEi ¼
P

p

P
lðalUplx̂þ blUplŷÞ has been interpolated from the potential

grid values Upl around each point xp; yp on the Larmor circle of the k0th ion, with interpolation coefficients al

and bl involving also the differential operator on U to obtain the electric field, and summed over these points to
obtain the Larmor average. wi is the weight of the i0th subparticle on the Larmor circle of the particle k. We
have ds ¼ dxx̂þ dyŷ for the polarization shift of the k0th ion perpendicular to the magnetic field with x̂ and ŷ

denoting the unit vectors on the polarization plane. The particle cloud fraction derivatives fxij ¼ dfij=dx and
fyij ¼ dfij=dy for the shift of the i0th subparticle cloud in each direction are obtained from the fraction fij of the
cloud of the i0th particle within the cell j. dV j is the volume of the j0th cell. The quantities with the upper index
m are the values at the start of the time step. Thus, in Eq. (6) Em is the electric field at the start of the time step
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dt, and E is that (unknown) at the end of the time step. For the charge density on the right hand side of Eq. (2),
q�niðxÞ � eneðxÞ, one obtains after summing Eq. (6) over all particles k an expression q

P
kd�npkðjÞ

þq
P

k

P
iwkifkij=dV j � e

P
kwkefkej=dV j, where

P
k

P
iwkifkij=dV j denotes the ion density obtained in the cell j

at the end of the time step dt from the guiding-center motion but without the polarization drift arising during
the step dt.

P
kwkefkej=dV j is the electron density at the end of the time step obtained within the drift-kinetic

approximation. Finite Larmor radius effects are neglected for electrons so that no subparticles or polarization
drift are applied for them. Introducing the expression of charge density into Eq. (2), one may evaluate the
potential UðxÞ at each grid point after the time step dt. hExi and hEyi are stored for each particle after each
time step from the resolved U, and are thus available as hEm

x i and hEm
y i at the next time step. In contrast to

other methods, here the ions are advanced according to polarization drift keeping the sampled f consistent
with particle motion. The polarization drift of each ion is calculated at the end of the time step dt from
ds ¼ ð1=XBÞðhEi � hEmiÞ using the evaluated field E, and is added to the ion coordinates. Thus, at the start
of any time step, the ion coordinates represent the full solution of the guiding-center equations including
the polarization drift.

Although formally similar to the standard GK method where an analytically (and from other drifts sepa-
rately) calculated cumulative sum of the ion response over the whole history of the particle motion q~npi is sep-
arated from the charge density of the Poisson equation, the present technique numerically calculates and
separates only the change of qd�npi arising during each time step.

The present technique increases somewhat the CPU and memory requirements in comparison to the
method with a fixed hf i and analytically evaluated ~npiðxÞ, but with a nine point interpolation for the field
and using four subparticle points on each ion Larmor radius, only 20% increase in CPU requirement has been
recorded over that with the standard gyrokinetic equation (with the given hf i). With a similar implicit solver
for the electron density perturbation by the parallel electric field acceleration, good stability properties of the
algorithm have been observed making possible to use time steps beyond the standard semi-implicit limit [31].

3.2. Implicit kinetic electrons

In fully kinetic electron simulations, electron dynamics determine the shortest time step increasing the CPU
usage significantly when compared to simulations with adiabatic electrons. An accurate electron time step is
less than Dt 6 Dz=vT with grid cell size Dz ¼ 2pR=N z in magnetic field direction where R is the major radius of
the tokamak and vT is the electron thermal velocity. For R ¼ 0:5 m, N z ¼ 4 and T 0 ¼ 400 eV, one has
Dt ¼ 10�7 s. To ensure stability with the time step Dt reaching the accuracy limit, the electron parallel motion
is treated implicitly [37]. Electron density neðtnÞ at each global time step tn can be sampled from locations xkðtnÞ
of each particle. Electron density at next step neðtnþ1Þ can be evaluated from the sum of sampled densities
~ne þ dne, where ~ne is sampled from the electron positions ~x obtained at time tnþ1 ensuing from the guiding-cen-
ter motion from tn till tnþ1 ¼ tn þ Dt, but excluding here the electron motion arising from the parallel acceler-
ation due to rkU: Dvk ¼ erkUDt=me, Dz ¼ erkUDt2=2me (here, we have neglected the electromagnetic
curvature effects in the electron motion obtained from Eq. (4)). The fully implicit effect of Ek on xkðtnþ1Þ is
obtained in terms of ~xðtnþ1Þ and the unknown Uðtnþ1Þ using the adopted force interpolation as
dxk ¼ �ðeDt2=2meÞ
X
‘

c‘U‘ðtnþ1Þẑ;
where the z-component of the electric field Ez ¼
P

‘c‘U‘ẑ acting on the k0th electron is interpolated from the po-
tential grid values U‘ around each point ~xk with interpolation coefficients c‘ involving also the differential oper-
ation on U to obtain the electric field. To construct the derivatives of U, we used both two-point as well as three-
point approximation for the derivative. The two-point approximation was found to be accurate enough for the
present scheme. Now, the density modification dnekðjÞ at a cell j by the k0th electron’s parallel shift dxk is
dnekðjÞ ¼ �ðeDt2=2meÞð1=dV jÞ
X
‘

wkfzkjc‘U‘ðtnþ1Þ; ð7Þ
where wk is the weight of the k0th electron. The particle cloud fraction derivative fxkj for the shift of the electron
cloud in the z-direction is made from the fraction fkj of the cloud of the k0th electron within the cell j. Sampling
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over all particles k constructs explicitly the total density change dneðjÞ at the cell j. We have then ne ¼ ~ne þ dne

at tnþ1 and xkðtnþ1Þ ¼ ~xkðtnþ1Þ þ dxk for each particle k. Since dne is constructed in a matrix form A � U, it can
be moved to the left hand side of Eq. (2) from the right hand side and the final equation reads as
� q
e0

A � Uþ q
e0

d�npi þ ðq2=mB�0Þ
Z
ðU� hUiÞ ohfii

ol
þ m

qX
½�r � ðhfiir?hUiÞ

�
þr �

Z /

ðU� hUiÞd/b�rhfii�
�

dv ¼ � q
e0

½~niðtnþ1Þ � ~ne� ð8Þ
which can be solved implicitly.
An implicit technique for electrons has been previously [31] used only in an approximate fashion based on a

guessed f with A � U 	 0:5x2
peDt2r2

kU, but including also semi-implicit variations of it. The present sampled,
fully implicit technique was successfully benchmarked against this approximation in conditions where the
approximation is expected to be good.
4. Methods for a global full f code

4.1. General remarks

Various gyrokinetic particle codes for 5D toroidal configuration have been developed, and many features in
them are shared by the present approach. However, the latter differs from them not only in the full f feature
and in the choice of the GK equations. The majority of other GK codes have been written for adiabatic elec-
trons. Alternatively, in simulations with kinetic electrons [27–30,42] flux tube domain or special consideration
for trapped electron group (in the magnetic well) have been applied making possible only local or approxima-
tive calculations. In the present work, the whole electron distribution is solved implicitly within the drift-
kinetic approximation. Various heat source models and multiple ion species for impurity with the loop voltage
provide the possibility to study the plasma pressure and momentum profiles evolution to equilibrium in global
transport simulations. This is further controlled by a recycling model of outflowing particles from the outer
boundary. The collisions among all particles are evaluated with the binary collision model introduced in
[43]. The collision operator is approximated in the drift-kinetic limit, i.e., finite Larmor radius effects are
not considered in the operator. Thus, no classical diffusion across B is modelled. The electrostatic field is
solved directly in a 3D grid of quasi-ballooning coordinates [44] without any Fourier solver. The particle ini-
tialization on invariant phase space accounting for pre-evaluated finite ion orbits, as first introduced in [2], is
adopted. The asymptotic motion of gyrocentres is implemented on Boozer coordinates [45]. Here, the stan-
dard gyrokinetic equations are incremented with the ion polarization drift as described in [36]. In the follow-
ing, some of these features of the full f gyrokinetic formalism are described in more details for their numerical
implementation.

4.2. Orbit following and sampling

In numerical implementation of Eq. (2), its right-hand side and the coefficient matrix for U in a given mesh
constructed for x are calculated at each time step by sampling from the positions and weights of the simula-
tion particles, ions and electrons, obtained by advancing the gyrocentres of the particles according to Eqs. (3)
and (4) with a fourth-order Runge–Kutta scheme. The polarization density as given in Eq. (6) and the elec-
tron parallel nonlinearity density in Eq. (7) are sampled at the same time as the corresponding density
obtained without polarization drift and without parallel electron acceleration at that time step.

P
kqd�npk

and dnek are then added to the left-hand side of Eq. (2) before inversion of this equation for UðxÞ. After
the inversion, the remaining gyrocentre motion by ion polarization drift and electron parallel acceleration
is calculated and the coordinates of the particle gyrocentres are updated accordingly. One should note here
that although the system (1)–(5) is here solved implicitly for the ion polarization drift and electron parallel
nonlinearity, the solution method still remains explicit for the other drifts like E� B and magnetic drifts
and for the parallel inertia.
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Two different coordinate systems are used in the code to get an optimal accuracy and resolution. Orbits are
followed in straight-field-line coordinates ðw; h; fÞ [45] and potential is solved in quasi-ballooning coordinates
ðw; v; fÞ [44]. Here, w is radial coordinate, f is toroidal coordinate and relation between the two poloidal coor-
dinates is v ¼ h�biðwÞf with biðwÞ ’ iðwÞ ¼ 1=qsðwÞ. Here, qs is safety factor. Two coordinate systems are used
to avoid poor resolution in solving potential structures in straight-field-line coordinates and problems with
periodicity condition in ballooning coordinates. Grid is needed only in quasi-ballooning coordinates where
the potential is solved and sampling is performed. Typically, in all three coordinates, the grid cells are equi-
distant but option of non-equidistant grid exists in w� v directions.

In sampling the coefficients of U and densities ~ni and ne at x from the particle guiding-center positions
R ¼ x� q, nearest grid-point (NGP), cloud-in-cell (CIC), and subtracted dipole (SD) schemes have been
tested and CIC technique [46] was chosen for sampling. Also, for interpolation in calculating the force on par-
ticles from the potential the same technique is used. The magnetic background is specified in White-Chance
straight-field-line coordinates ðw; h; fÞ [45] taking B ¼ B0R0=R for the magnetic field B dependence on the
major radius R. The quantities with the zero index are taken at the magnetic axis. In the benchmark tests
and simulations to be discussed in Sections 5 and 6, we assume magnetic surfaces with circular poloidal
cross-section and with no Shafranov shift. The latter assumptions mean an order of r2=R2 error in specifying
h which is reflected in similar steady perturbation of poloidal distribution of particle density. This has been
reduced to order r3=R3 by a modification of the relation of h to the true poloidal angle.

No smoothing algorithm is applied except near the boundaries where flux surface average of charge density
separation on the right-hand side of Eq. (2) is taken in 1–3 radial grid points next to the boundary before solv-
ing Eq. (2). This has a tendency to decrease perturbations at the edge. For the validation tests to be described
appropriate Fourier filtering both for the charge separation and the potential has been adopted where
necessary.

4.3. Initialization

In the toroidal plasma simulation, it is common to try to initialize the particles in such a way that after the
first time step the sampling constructs given initial density and temperature profiles in radial, poloidal, and
toroidal directions. However, for wide particle orbits and arbitrary collisionality in non-circular tokamak
geometry this task is difficult. For weak collisionality, methods [47] based on variable transformation to con-
stants-of-motion space have been used in various studies of finite orbit effects for both initialization and fur-
ther calculations. Although not restricted to, initialization to the Maxwellian velocity distribution with the
local temperature is performed and zero initial electrostatic potential is often assumed. If no such account
for phase space effects would be taken, the resulting profiles of macroscopic variables could be far from the
wanted profiles. Even more seriously, there can transiently exist a finite net radial current even with closed
orbits and no collisions. This transient current decays away with oscillations on a few bounce time scales,
but may severely perturb the solution for the E dynamics as noted in [2]. This can be avoided to a large extent
by initializing particles in an invariant space that spans the different particle orbits.

An initialization of ions on numerically pre-evaluated collisionless orbits is adopted here to guarantee
that no strong radial current arises at the start from the radial inhomogeneity even in the presence of col-
lisions. Due to the finite collisionality, no attempt to create given density, temperature, and poloidal/toroi-
dal flow distributions was made. The effect of turbulence which often sets on an ion bounce time scale
would actually make any such trial impossible. Therefore, in the initialization we have called for a zero
radial flux surface averaged particle flux after the first time step. This so called quiescent initialization
was introduced in Ref. [2]. Starting coordinates in radius, poloidal and toroidal angles, velocity and veloc-
ity pitch are first selected for the particles in such a way that these after sampling at the start would con-
struct the wished particle distribution function f ðx; vÞ. Using these coordinates as initial values,
collisionless virtual orbits are pre-evaluated by numerically integrating the adopted gyrokinetic equations
of motion (using constant time step dt for each such an integration) for each initialization. The varying
coordinates on the orbit are saved as coordinate sets ðRðtiÞ; lðtiÞ; vkðtiÞÞ in memory at every time step
ti ¼ idt used. After this, a set of particle coordinates to be used as initial values in the actual simulation
is selected randomly among the saved coordinate sets on the virtual orbit. This random selection ensures
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that the radial particle flux is statistically small at the start. Similar methods have been incorporated also
in other codes [17,23].

After initialising ions on collisionless orbits, for each ion, one electron is initialized at the same location to
ensure quasi-neutrality. This is done at the gyro-orbit of each ion since the ion densities and matrix coefficients
are sampled from the gyro-orbit, not from the gyrocentre. However, one should note that collisions, turbu-
lence, and neoclassical effects with poloidal non-uniformity in pressure make it very difficult to initialize the
plasma in equilibrium without causing numerical transients. Therefore, strong restructuring of f ðx; v; tÞ at
the start of simulation follows almost always in practice, even with this quiescent initialization. In the bench-
mark tests for the linear growth of the unstable modes, where the onset of oscillations in E by radial currents is
not a problem, the quiescent initialization is not used but instead the starting coordinates used otherwise for
the integration of virtual orbits are applied.

4.4. Boundary conditions

In poloidal and toroidal direction boundary conditions in straight-field-line coordinates are trivial and in
quasi-ballooning coordinates they are explained in Ref. [44]. In radial direction, the computational effort is
reduced enormously by restricting the simulation to a relevant region rL < r < rR. Whenever there are no spe-
cial constraints at the boundaries rL and rR posed by the problem, and when the mass flow parallel to the mag-
netic field is given at the boundaries, E can be evaluated in the region rL < r < rR by using the well-known
neoclassical analytical ambipolar value EaðrÞ as the boundary condition at r ¼ rL and r ¼ rR. However, in
GK particle codes it has been found necessary to shield the boundaries by special buffer regions where the
potential and/or the particle densities are made evanescent (see e.g. [16,48]). This means that in practice
one applies U ¼ 0 conditions at the boundaries. In the present method, we have found it possible to apply
a given radial electric field Er boundary value (without setting U ¼ 0) at the other boundary (either at inner
or the outer boundary) and a given U at the opposite boundary without any evanescent potential regions or
suppression of particle weights. What has been important for the stability of boundaries has been the flux-sur-
face averaging of the charge separation within the buffer regions (1–3 grid widths from the boundaries) around
boundaries. What is important for a valid outer boundary condition in transport simulations is that no trans-
port plug is created at the boundary by smoothing or averaging the field or charge separation. This is an
important complication of the full f calculation, where the numerical stability of the boundaries is an issue.

In the following ideal benchmark tests and examples with no metallic boundaries, we have set U ¼ 0 at the
inner boundary and Er ¼ 0 at the outer boundary. On boundaries in contact with metal, zero potential or
sheath potential condition is applied. At the inner boundary, the outflowing particles are reflected. This is
accomplished by following the orbits for r < rL in the absence of collisions and polarization drift, and stopping
the clock during the time the particles spend in these regions. This is consistent with the assumption of no
toroidal momentum source and zero radial current for r < rL. At the outer boundary, the same method
can be used and the particles hitting the divertor or wall outside r > rR can be treated in the same way as
explained in Ref. [2] with prompt reinitialization at r ¼ rR uniformly in pitch and poloidal angle, with the local
Maxwellian velocity distribution.

In more realistic simulations, pairwise reinitialization of outflowing ions and electrons according to
assumed neutral distribution or ionization on randomly directed straight return paths of recycled neutrals
is chosen. This maintains the otherwise flattening density profile. In this method, each outflowing particle
at each time step is registered. After the global time step is finished for the whole particle ensemble, the
sum of the total charge W i ¼

P
aN aZaewa of the lost ions is compared to that of electrons, W e ¼ N eewe. Here,

a denotes the ion species, Za its charge number, N a is the number of the lost particles in species a and wa is the
weight of this species. In the present code version, the weights for each ion species are determined from the
condition Zawa ¼ we, and equal weights are used among the particles within the same species. Hence, the pair-
wise reinitialization is performed up to the charge W a or W e, which one is smaller. The rest of the particles, i.e.,
the unpaired particles, are reinitialized at r ¼ rR. The paired particles, however, are reinitialised according to a
model for neutral ionization deeper in the plasma as cold ion–electron pairs. As these pairs now have exactly
zero total charge, no net charge is carried deeper into the plasma. At the outer edge, exactly the same charge
remains as the net charge what was flowing through the outer edge.
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In sampling, gyro-circles extending outside the calculation domain at the radial boundaries are reflected
back to the domain. Otherwise total charge at the simulation regime would not conserve. To sample the
ion polarization density from the gyro-radii extending outside the calculation domain, the boundary condi-
tions of the electrostatic potential are used to treat both the reflected and original ion contributions. For
the code stability at boundaries, a consistent consideration of sampling of both local density as well as the
GK coefficient matrix elements from the outflowing particles at the boundaries was necessary. Here, the pres-
ent method with Eq. (2) was found more stable than with the standard gyrokinetic Poisson equation.

4.5. Numerical noise and accuracy

The numerical noise created by a finite number of simulation particles makes global full f gyrokinetic sim-
ulations demanding as regards computing time and memory usage. In general, the noise level in the particle
simulations reduces as 1=

ffiffiffiffi
N
p

, where N is the average number of simulation particles in each cell. The noise not
only makes it difficult to isolate physical fluctuations of plasma density and electrostatic potential from the
fluctuations ensuing from the finite number of simulation particles but also creates unphysical particle and
heat flux and demolishes the neoclassical equilibrium. To quantify this effect consider the mixing-length esti-
mate dn=n ¼ 1=k?Ln for the nonlinear saturation level of physical fluctuations. Here, Ln is the density gradient
scale length. In the case of Cyclone Base case linear benchmark to be discussed in the next Section, k?qi in
range 0.2–0.3 is found for the maximum growth of the unstable turbulent spectrum and Ln=qi ¼ 500. Here,
the ion Larmor radius is denoted by qi. Hence, dn=n � 0:01 is predicted for the rms fluctuation level of phys-
ical fluctuations. When N � 1500 in the simulation, the 1=

ffiffiffiffi
N
p

noise is actually somewhat higher for density
fluctuation level than expected for physical fluctuations in this case. In spite of this caveat, by appropriate fil-
tering of data either in time or wavenumber, the linear growth rates of the unstable modes can be satisfactorily
identified behind this noise. Clearly, the noise problem is enhanced by the choice of relatively low temperature
and weak density gradient.

For steeper density gradient and higher temperature, the physical density fluctuations are much better
resolved at saturation according to the mixing-length prediction. According to the adiabatic relation
eU=T ¼ dn=n, these scalings are reflected in potential fluctuations, too, but the noise fluctuations of potential
will increase linearly with plasma temperature, too. Although the charge density separation becomes by sev-
eral orders of magnitudes smaller than either ion or electron density, the overall effect of adding ion and elec-
tron noise does not count more than to a twofold enhancement of potential fluctuation level after inversion of
the Poisson equation. This is due to the fact that the quasineutrality is enforced to noise, too. Another twofold
enhancement to potential fluctuations arises from the statistical sampling of the coefficient matrix of the GK
Poisson equation from the ion and electron implicit terms in our present method.

To give a prediction for the contribution of the noise to ion heat conductivity (see, e.g. Fig. 4), consider
noise potential fluctuations on a magnetic surface having s as a decorrelation time for fluctuations. The radial
diffusion coefficient can be estimated from D ¼ hdr2i=s, where dr is the particle shift from the surface by the
radial E � B velocity during the decorrelation time. Taking dr ¼ hUirmss=BDy, we find an estimate
D ¼ hUi2rmss=B2Dy2; ð9Þ
where Dy denotes the grid cell size in the poloidal direction. The decorrelation time can be estimated from
s ¼ Dz=vTe, where Dz is the grid cell size along the magnetic field line. Here, the dominant noise is assumed
to be created by electron free motion along the magnetic field, and is taken to be decorrelated by the time elec-
trons can pass one cell element along the field line.

It is easy to see that the diffusivity by the noise according to our estimate scales as T 3=2 if an adiabatic poten-
tial response is assumed, while the mixing-length estimate of v from the physical fluctuations similarly scales as
T 3=2. Therefore, although helping us to identify the physical density fluctuations from noise, the increasing
temperature does not help to resolve the physical ion heat conductivity if the number of simulation particles
is too low. However higher temperature implies longer wavelengths for unstable modes and thus a coarser grid
can be used in the simulation. This makes higher the number of particles per cell (N), and hUirms is reduced for
that reason and also because of the longer Dy, which implies smaller noise flux.
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However, one should note that both physical and noise radial fluxes of electrons and ions by E � B drift
create net current due to the ion gyroaveraging [49]. This current density is proportional to k2

?q
2
i Ce=4, where

Ce is the radial particle flux of electrons. k? represents here the dominant part of fluctuations responsible for
the flux. This non-ambipolarity is incorporated into the neoclassical equilibrium. Its most direct implication
is that the radial electric field in the equilibrium becomes dependent on this non-ambipolar current. The
latter is negative which makes the radial electric field more positive in equilibrium. Due to the noise con-
tribution in the particle fluxes, the noise can deteriorate the accuracy in obtaining the radial electric field
and flow velocities of the plasma. This is in particular the case where the radial noise flux of particles dom-
inates over the corresponding flux of particles by physical fluctuations and over the ion flux by ion–ion col-
lisions. The effect is further strengthened for the noise due to the dominant role the short wavelengths have
in the noise potential spectrum in driving radial particle flux (implying larger k2

?q
2
i in the non-ambipolar

current formula).
The least constraints for the required number of simulation particles to suppress the noise can be found in

applications where Ln is not too large and temperature not too small. Other parameters like LT=Ln, character-
istics of turbulent spectrum, or grid specifications may equally affect the required number of simulation par-
ticles. In the case of FT-2 tokamak plasma parameters in Table 2, a good statistics with little role of noise in
transport quantities is obtained with N > 800. This is due to short Ln ¼ 0:08 m and relatively high temperature
of T = 100–500 eV. For practical applications, as will be shown in the following Sections, N = 500–5000
depending on the nonlinear saturation level of turbulence should be enough for sufficiently good statistics
using the full f PIC method.

Time step in the kinetic simulation was found to be restricted by numerical electron heating [46] rather than
the accuracy of the simulation even though the implicit solver for the electrons described in Section 3.2 has
made possible to use time steps much beyond the standard semi-implicit limit [31]. The inertial streaming is
treated explicitly, while the parallel acceleration is considered implicitly treating thus properly the stiffness
arising from this term to the gyrokinetic equations. This mixture of explicit–implicit methods has however
some limitations. The inertial streaming is firstly considered in calculations, before the parallel acceleration.
That arises the question whether the electric field causing the acceleration is sampled at the correct position,
since it could have altered considerably the streaming. This condition can be stated in the way that the method
will be precise as long as the parallel shift due to the acceleration is much smaller than the inertial streaming,
which in turn is limited in a time step by a Courant-like condition. The expression for both toroidal move-
ments (Dzs due to streaming and Dza due to acceleration) is the following
Dzs ¼ veDt 	 2kBT e

me

� �1=2

Dt;

Dza ¼
eozU
2me

ðDtÞ2;

Dza < Dzs ! Dt <
8mekBT e

eðozUÞ2

" #1=2

:

This limitation for the time step is around 2 ls for the following unfavourable set of parameters: T e ¼ 100 eV,
ozU ¼ 100=0:1 ¼ 1000 V/m (unrealistically high). The currently used time step is two orders of magnitude be-
low the limit, ensuring the locality of the acceleration shift. Typical runs show consistently stable T e regimes
which are being perturbed only by externally posed heating or by the boundary zone of outward heat flux. The
latter process is caused by the outer boundary conditions, which replaces outgoing particles with cold ion–
electron pairs from neutrals. No numerical electron cooling has been found to arise from the present implicit
treatment of the electron parallel nonlinearity.

While the accuracy in r and v directions may be a problem especially at the outer edge, numerical accuracy
from Dt 6 Dz=vTe / T�1=2

e N�1
z condition is most critical at the inner edge where the temperature is higher.

Here, Nz is the number of grid cells in the toroidal direction. Thus, increase in the number of toroidal grid
points in order to get better resolution increases CPU and memory requirements both because more particles
are needed and, also, because one needs to shorten the time step. For the cases studied in the present work, an
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upper time step limit of 5� 10�8 s has been found to ensure a sufficient suppression of numerical heating
(Dt 6 Dz=vTe condition giving s ¼ 10�7 s at inner edge and s ¼ 3� 10�7 s at the outer) for a reasonable Nz.

Other aspects that are of importance in convergence and resolution are for example how the contributions
of the particles are sampled and derivatives are differentiated (see Section 3.1). A sufficient number of gyro-
averaging points in typical runs was found to be four as the excited modes had j2 < 1. Increasing the number
of gyroaveraging would not change the results remarkably here but would increase the CPU usage. For studies
of the modes with j2 � 1, however this number has to be increased.

4.6. Computer memory considerations

Because of its high consumption of computational resources, the code has been successfully prepared and
optimized for parallel execution on different multiprocessor platforms. It has been run both in IBM eServer
1600 and in different PC clusters. Inter-processor communication is held using the MPI standard for sake of
efficiency and compatibility. Matrix inversion is performed by means of computational linear algebra pack-
ages. The use of IBM’s PESSL and open source PETSc is implemented in the code for optimum performance
depending on the platform used.

The heaviest memory demand and communication load take place during construction of the coefficient
matrix of the GK equation of the electromagnetic field. Data collected from particles are stored in binary
tree-like buffers (AVL) before being sent to the corresponding processors. This method minimizes the memory
consumption and amount of data being transferred among processors [50].

Further reduce in communication times can be achieved by means of domain decomposition. The imple-
mentation of a system splitting into toroidal domains is under way. It will reduce the amount of data transfers
between processors, which will reduce computation times specially in massively parallel computations.

5. Linear and nonlinear comparisons

A relatively large variety of gyrokinetic and gyrofluid simulation models for investigating microinstabilities
and turbulence exist, and to build confidence in the results produced by these models, a rigorous benchmark-
ing procedure for cross-validation must be adopted. In this section we present benchmarks of the code for the
neoclassical behavior, for the linear mode instability regime with respect to a widely used test case, and to a
case with kinetic electron physics and for nonlinear saturation level of heat diffusion. Also numerical conver-
gence tests are presented. Here, the nonlinear terms in Eq. (5) have been neglected to ease the comparison with
other codes where these terms are not included.

In the linear and nonlinear comparative tests we adopt the so-called ‘‘Cyclone DIII-D base case” dimen-
sionless parameters [13] with hydrogen ions, a widely used test case described in Table 1. Correspondingly,

initial density and temperature radial profiles are given as n0 1þ an tanh r0�r
anLn

h i
, T 0 1þ aT tanh r0�r

aT LT

h i
with

an ¼ aT ¼ 0:95, r0 ¼ ðrL þ rRÞ=2, n0 ¼ 5 � 1019 m�3, T 0 ¼ 100 eV, for the analysis of the Cyclone base case in
the adiabatic case. In the kinetic electron case we use an initial density n0 ¼ 5 � 1017 m�3 and an ¼ aT ¼ 0:9.
For the linear analysis, the inner and outer radii of the simulation region are rL ¼ 0:16 m, rR ¼ 0:024 m with
a ¼ 0:3975 m as the minor radius. The plasma current density profile is taken as j ¼ j0ð1� r2=a2ÞaI with
j0 ¼ I0ð1þ aIÞ=pa2 giving the maximum current density in terms of the total plasma current I0 and minor
radius a. In the following, we have aI ¼ 3:0, BT ¼ 1:1 T, R ¼ 1:1 m, and I0 ¼ 200 kA. At r ¼ r0, qi=a ¼ 0:0023.

For the transport simulations, we have chosen the FT-2 tokamak configuration described in Table 2. The
toroidal magnetic field is B ¼ 2:2 T and the total plasma current is I0 ¼ 22 kA, and initial density and temper-
Table 1
Initial parameters for the ‘‘cyclone base case” test cases with adiabatic and kinetic electrons

R=LT ¼ 6:9 R=Ln ¼ 2:2 R=a ¼ 2:78 r0=a ¼ 0:5 qsðr0Þ ¼ 1:43 ŝ ¼ 0:78

T iðr0Þ ¼ 100 eV Dr=qi ¼ 2:87 rDh=qi ¼ 4:19 Du ¼ 0:393

The temperature and density scale lengths at r ¼ r0 are given by L�1
T ¼ jr ln T j and L�1

n ¼ jr ln nj, respectively, R is the major radius and a

is the minor radius, ŝ ¼ r
qs

dqs
dr is the magnetic shear, and qs is the magnetic safety factor,



Table 2
Initial parameters for the FT-2 transport simulations

R=LT ¼ 8:3 R=Ln ¼ 36:67 R=a ¼ 6:875 r0=a ¼ 0:625 ŝ ¼ 0:462 qsðr0Þ ¼ 3:58

Dr=qi ¼ 2:84 rDh=qi ¼ 2:23 Du ¼ 1:57

The temperature and density scale lengths are given by L�1
T ¼ jr ln T j and L�1

n ¼ jr ln nj, respectively, at r0 ¼ 0:05 m. R is the major radius
and a is the minor radius, ŝ ¼ r

qs

dqs
dr is the magnetic shear, and qs is the magnetic safety factor.
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ature radial profiles are given as n0½1� ðr=aÞ2�an þ n1, T 0½1� ðr=aÞ2�aT þ T 1 with an ¼ 2:5 and aT ¼ 1:3,
n0 ¼ 5� 1019 m�3, and n1 ¼ 1� 1018 m�3. For electrons we have T 0 ¼ 350 eV and T 1 ¼ 15 eV and for the deu-
terium ions T 0 ¼ 180 eV and T 1 ¼ 15 eV. In simulations, we have rL ¼ 0:021 m, rR ¼ 0:08 m, with a ¼ 0:08 m
as the minor radius and R ¼ 0:55 m as the major radius. The current density profile is parabolic with aI ¼ 1.
At r=a ¼ 0:5, qi=a ¼ 0:01.

The electron model used in adiabatic simulations assumes Boltzmann-distributed electrons, whose response
to an electric potential U is taken as
ne ¼ hnii þ dne ¼ hniie
eðU�hUiÞ

T e 	 hnii 1þ eðU� hUiÞ
T e

� �
; ð10Þ
where hnii and hUi are the flux surface averages of the simulated ion density and potential. This model allows
for the ion temperature gradient instability, but not any instabilities associated with electron motion such as
trapped electron modes or electron temperature gradient modes.

5.1. Neo-classical benchmarking

In current advanced confinement regimes in tokamaks the ion heat flux is often observed to reduce locally
to neoclassical levels. It is therefore important to have a simulation model which includes proper neoclassical
flows in addition to turbulent transport. Here, we first quote the analytic equations and the results of previous
particle simulations of neoclassical quantities in the absence of turbulence and, then, report the results of neo-
classical tests done with the present gyrokinetic code.

5.1.1. Analytic equations

The non-ambipolar state terminates in a quasi-stationary state in which the ‘ambipolar’ Er is determined by
the toroidal angular momentum and the pressure gradient driven diamagnetic flows. An expression for this
ambipolar Er given in the literature is [51]
Er ¼
T e

e
n0i
ni

þ c
T 0i
T i

� �
þ BpU k; ð11Þ
in which U k is the average parallel flow velocity, Bp is the poloidal magnetic field component and T i ðT eÞ the
ion (electron) temperature, prime denotes the derivative with respect to radius, and c is a coefficient depending
on the normalized collisionality m�i ¼ miiRqs=vT �

3=2 (expression which is valid in all collisionality regimes is gi-
ven in Eq. (6.136) of Ref. [51]). Here, vT ¼ ð2T=mÞ1=2 is the thermal velocity, � is the inverse aspect ratio and mii

is the ion–ion collision frequency. Using Eq. (6.131) of Ref. [51], expression for neoclassical heat diffusion
coefficient reads as
vneo ¼ K2

ffiffi
�
p

q2
pmii=

ffiffiffi
2
p

; ð12Þ
where qp ¼ vT m=eBp is the poloidal Larmor radius. The coefficient K2 is given in [52], taking into account
small inverse aspect ratio corrections, as
K2 ¼ 0:66
K�2=0:66

1þ 1:03
ffiffiffiffiffi
m�i
p þ 0:31m�i

þ 1:77m�i�3=2

1þ 0:74m�i�3=2
F

� �
; ð13Þ
where F 	 �3=2 and K�2 ¼ ð0:66þ 1:88
ffiffi
�
p
� 1:54�Þð1þ 1:5�2Þ.
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Previously, before developing the present gyrokinetic version of the code, the neoclassical behavior was
investigated in the flux surface averaged potential approximation where the field is evaluated from the balance
of flux surface averaged radial currents [2]. For (in time) fixed radial electric field Er, the numerical model was
tested in Refs. [53] by calculating poloidal rotation relaxation rates for a homogeneous plasma, and by com-
paring the perpendicular conductivity and parallel viscosity with the analytical estimates. The simulations
were carried out for a wide range of collisionalities and rotation velocities. Quantitative agreement was found,
but, of course, some differences exist which were traced to arise from various simplifications made in analytic

theory. With non-fixed Er, i.e., solving the electrostatic potential from the radial flux-surfaced current balance
in the flux surface averaged potential approximation [2], Er was found to approach and agree with the neo-
classical analytical estimate [51] of the radial electric field in the wide parameter range, where the standard
neoclassical theory is valid, including all the collisionality regimes. This comparison was made possible by
investigations where the effect of boundaries on the evolution of the interior plasma region was carefully con-
sidered and controlled. In special regimes including either very steep density and temperature profiles [54] or
super Mach poloidal flows [55], results in line with other more advanced neoclassical theories [56] were found.

5.1.2. Gyrokinetic simulation of neoclassical Er and GAM:s

In the present gyrokinetic version of the code, flux-surface averaging the electrostatic potential obtained
from Eq. (2) before calculation of the guiding-center motion has reproduced the neoclassical results obtained
by solving the potential from the flux-surface averaged radial current balance described above. In the follow-
ing, we wish to investigate the behavior of U for the complete solution of the guiding-center motion without
any flux surface averaging. As a first neoclassical benchmark case we study the appearance of neoclassical
equilibrium as a result of steadying after initial transients. The geodesic acoustic mode (GAM) oscillations
are produced in the system by initializing a particle distribution function (e.g. based on a poloidally nearly
homogeneous local Maxwellian velocity distribution), which is not a proper neoclassical equilibrium [57].

The time evolution of the radial profiles of the flux surface averaged potential and temperature and density
are shown in Fig. 1 for the FT-2 configuration with kinetic electrons. Quiescent initialization is used which
however is not able to suppress the radial current caused by improper distribution of particles at initialization
(with respect to a neoclassical equilibrium). The configuration is given in Table 2. The plasma is heated by
electron Ohmic heating (loop voltage of 0.5 V with an effective charge of Z ¼ 1) and by 70–100 kW off-axis
lower hybrid (LH) wave ion heating. The strength of the ion perpendicular velocity diffusion at the Landau
resonance of the LH waves is assumed to be centered at r ¼ 0:05 m and to have a Gaussian profile in radius
with a width of 0.03 cm. For the LH heating power deposition and for the numerical implementation of the
LH model see Ref. [55]. The heat source sustains the pressure profile against turbulent heat losses as well as
helps in increasing slowly the ion temperature over 200 eV during the simulation time 150 ls (time step
5� 10�8 s in an Nr ¼ 30, N v ¼ 200, N f ¼ 4 grid). The pressure profile appears to become stabilized at the bal-
ance between heating and heat losses after 100 ls simulation. Fig. 1 shows also the evolution of the radial elec-
tric field averaged over the steepest pressure gradient region compared asymptotically with the
correspondingly averaged standard neoclassical estimate for Er [51] evaluated from the shown density and
temperature profiles with zero averaged parallel flow velocity (no significant parallel ion flow was developed
during the simulation).

Both the potential and Er are seen to evolve through GAM oscillations to a quasi-steady-state in quanti-
tative agreement with the neoclassical estimate. A similar asymptotic behavior in agreement with the standard
neoclassical estimate has been found also in other runs where either the pressure gradient was not too strong
or plasma current was not too small and which covered a wide range of collisionalities ranging from collision
dominated region to banana region. However, enhanced Er at the region Mp 
 Er=vTiBp � 1 , and, in partic-
ular at outer radii, the contribution of Reynolds stress and viscosity of turbulence have been identified. Fur-
ther study of these effects is given in Section 6 and in a separate publication [58].

Having the collisionality m�i ¼ 4 and qs ¼ 3:58 at r ¼ 0:05 m in the present case of Fig. 1, the GAM oscil-
lations are not strongly damped at this steep gradient region according to the analytical theory of GAM oscil-
lations (see, e.g. [59]). This can also be observed in the figure as persistence of the oscillations. One should note
that the relatively rapid changes in the pressure profile and neoclassical potential may also amplify the GAM
oscillations. This explains partly the occasional pick up in the strength of the oscillations as seen in the figure.
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the residual level for the GAM oscillations seen in the simulations have been plotted against the analytical
expressions xGam ¼ ð7=4þ T e=T iÞ1=2vTi=R [59] and AR ¼ 1=ð1þ 1:6q2

s=
ffiffiffiffiffiffiffiffi
r=R

p
Þ [60] for the GAM oscillation fre-

quency xGam and the Rosenbluth residual level AR. The resulting values have been produced at r=a ¼ 0:75 for
a variety of plasma ion and electron temperatures (90–360 eV), magnetic field (0.6–2.45 T), major radius
ðR ¼ 0:3� 0:9 mÞ and qs ¼ 1:28–2:91. The plasma density was 5:1� 1019 m�3. Even in the present case with
constant qs, the determination of the GAM characteristics is complicated through the effect of boundaries
which in a relatively early stage after a few oscillation periods start affecting the GAM oscillation in the radial
interior of the simulation region. In spite of this, a fair agreement with the theory for the GAM frequency and
residual level is found. It should be noted that the GAM theory has been developed for adiabatic electrons,
radially periodic boundary conditions, and for a flux surface averaged electrostatic potential only. To ease the
comparison, part of the simulation runs were performed by flux surface averaging both the electrostatic poten-
tial and the charge separation in Eq. (2) before the guiding center calculations and inversion of Eq. (2), respec-
tively. The GAM frequencies were found to agree with the theory equally well irrespective of this
simplification. However, the agreement for the residual levels was obtained only in the presence of this flux
surface averaging. In the presence of collisions, a similar agreement for frequencies was found but the residual
level was damped away together with the oscillations. The collisionless damping was in general found to be
stronger than Landau damping predicts. This is believed to arise from the presence of kinetic electrons (with
adiabatic electrons, a closer agreement with the theory prediction of the Landau damping was obtained) and
from the radial aperiodicity and finite orbit widths crossing the boundaries. It is the global nature of the pres-
ent code which makes the GAM analysis thus a much more difficult task (but also more realistic) than for flux
tube delta f simulations [16] where the field is made periodic in radial direction.

5.2. Linear growth of unstable modes

Whatever a nonlinear model is used in drift wave turbulence modelling, it should produce the same physics
(growth rates c and frequencies xr of unstable drift waves) in the linear regime as any other model. Although
this is the most fundamental test to which every code must agree to a reasonable degree, it does not guarantee
proper nonlinear behavior. With a full f code linear benchmarking is challenging, because of background var-
iation for plasma densities, temperatures and charge separation, and of course – numerical noise.

Traditionally in delta f codes the linear analyses are performed using a local Maxwellian background dis-
tribution, which is simple to implement and produces adequate results. However, in the case of a full f code,
creation of such a stable background is not trivial due to finite banana width effects which produce rather large
oscillations in the ion density (and profiles). One solution is to adopt the quiescent start-up for the distribution
described in the previous chapter. It has been observed with delta f calculations [17] that this kind of procedure
produces some difference in the growth rates of unstable modes, tending to reduce growth rates slightly with
respect to calculation with a local Maxwellian initialization. Linear analyses in the adiabatic electron case have
been studied with both quiescent and local Maxwellian initialization, but the results given in Fig. 3(a) are pro-
duced with local Maxwellian ion initialization. In the kinetic case where the initialization plays a more impor-
tant role, however, the quiescent initialization is used.

In both the adiabatic and kinetic linear cases, we perform the linear analyses in the code by selecting a spe-
cific toroidal mode number n in the field equation, while allowing the whole spectrum of corresponding poloi-
dal mode numbers m. The quasi-ballooning coordinate system optimizes the mode spectrum so that only
modes near the resonance criterion jmiþ nj 6 N f=2, evaluated at the resonant surface r ¼ r0, are supported,
where N f is the total number of toroidal grid cells. When we pick only one toroidal mode number n as the
target of simulation, we are effectively modelling also qsN f poloidal mode numbers. The n filtering is done
to remove the effects of toroidal mode coupling and mode selection, especially important for off-maximum
modes. The mode structure is then output from ELMFIRE data by Fourier analysis in the quasi-ballooning
coordinate system [44], and the results are calculated from the energy associated with each mode near the res-
onant flux surface at r0. The corresponding khqi in Figs. 3(a) and (b) are obtained from the resonance criterion
m ¼ �nqs (which corresponds to the mode kk ¼ 0) and we use kh ¼ m=r. The growth rates are tabulated for
amplitudes of potential perturbations, not for the mode energy. It should be noted that in present simulations
with qsN f poloidal modes growing at the same time, there is a coupling among these modes already at the lin-
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ear stage. In fact, the different m modes are resonant at slightly different radii around r0 and grow at slightly
different rates making the determination of the growth rate (and frequency) somewhat arbitrary. It is not clear,
whether the total energy of the mode n (including the energies of all m modes attached to it) or the energy of
the resonant mode m ¼ �nqs at r0 only (as in the present work) has been used for the growth rate and fre-
quency evaluation in benchmark tests of the other simulation codes.

In the linear regime, the ELMFIRE is tested in two different ways: we examine the linear growth of ion
temperature gradient modes with the adiabatic electron model within the ‘‘Cyclone DIII-D base case” param-
eter set [61] (given in Table 1). The kinetic electron model presented in Section 3.2 is benchmarked adhering to
the parameters given in Ref. [42], which has otherwise the same parameters as the adiabatic case but the elec-
tron profile is given by T e0 ¼ T iðr0Þ, LTe ¼ 1, and the electron–ion collision frequency in the linear stability
analyses is given by meiLn=vTi ¼ 0:14 (whereas in the adiabatic case, no collisions were present). The results
for the adiabatic electron case are shown in Fig. 3(a) which have a fair agreement with the results obtained
with other gyrokinetic code results [13]. The main deviations, in particular in the growth rate, arise from
the relatively high noise level the present full f calculation has with a reasonable number of simulation parti-
cles. Here, the time step 2� 10�7 s in an Nr ¼ 30, N v ¼ 300, N f ¼ 16 grid was applied using 384 ions per grid
cell.

In Fig. 3(b) we present the results on the kinetic electron simulation of the Cyclone base case. Because the
electron temperature gradient is small, the main contribution should be from the ITG branch of the instability
like in the adiabatic case. The present results should be compared to the results obtained in [42] where about
1.5–2 higher growth rates were obtained than in the adiabatic case. The present full f simulation results have a
fair agreement with the growth rate values of the modes obtained from [42], in particular for khqi values at
maximum growth and for larger values. Here, for the present kinetic simulation the time step 5� 10�8 s in
a grid of Nr ¼ 30, N v ¼ 300, N f ¼ 16 was applied using 256 ions per grid cell. Due to the electron motion,
the noise level is enhanced and running average filtering of the data using a time window of 80–160 time steps
was used to extract the frequencies and growth rates from the Fourier mode energies. At the low khqi range the
agreement with the results obtained in [42] is poor. There are several reasons for this which all arise from the
finite number of simulation particles that is feasible within the computational resources available for the pres-
ent runs. First, due to the low angular frequency of the modes in this regime, the modes are locked to the
growth relatively slowly. Secondly, as pronounced mode perturbations well above the average noise for certain
m modes at the initialization are difficult to avoid in the full f simulation, the growth of any selected mode can
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suffer from mode coupling to the modes at pronounced level at initialization. Thus, the error margins for the
mode growth in the long wavelength limit are noticeable in our present runs. The angular frequency of the
modes in [42] was presented only for khqi ¼ 0:3, and therefore these angular frequency values are not plotted
in comparison with the present simulation results in Fig. 3(b). It is however noted that the value
xLn=vTi � �0:54 at khqi ¼ 0:3 from [42] supports the angular frequency values obtained from the present
simulation.

5.3. Collisional nonlinear behavior

In saturation (nonlinear regime) of drift wave turbulence the only widely used benchmark is the study of
level and scaling of ion heat diffusion constant vi as a function of R=LT . There has been much emphasis on
this benchmark over the simple linear stability analyses, which have been found not to always reflect the more
complex nonlinear physics, as it was shown that some models produce significantly different scaling from the
gyrokinetic particle models [13,61], even though they reproduce the same linear behavior.

In the saturation runs the parameters given in Table 1 and in the beginning of this Section were chosen
except deuterium instead of hydrogen was selected for the ion species. The time step of 7� 10�8 s in an
Nr ¼ 30, N v ¼ 300, N f ¼ 8 grid with N ¼ 1500 particles per cell was used. It is important to note, that in
the nonlinear saturation case with kinetic electrons Chen et al. [42] used meiLn=vTi ¼ 0:45, which differs from
that used in the linear growth analyses. In the kinetic case in Fig. 4 we set meiLn=vTi ¼ 45 and
n0 ¼ 4:5� 1019 m�3, i.e., 100 times stronger collisionality than in Ref. [42].

With the parameters and data of the case in Fig. 4 for N ¼ 1500 we obtain D ¼ 0:4 m2=s from Eq. (9). This
should be compared to the value of v � 0:5 m2=s obtained at initial stages of simulation. This level was found
to scale as 1=N in the present case in the simulations.

Using the mixing-length estimate for the physical level of fluctuations, the radial ion heat conductivity can
be estimated from v ¼ ð5=2ÞðLT=LnÞðv2

Ti=XiÞð1=k?LnÞg, where g arises from the relation dn ¼ neUð1� igÞ=T
between the density and potential fluctuations. Using g � c=x � 0:5 from the linear growth rate analysis
for the collisionless Cyclone Base case in Fig. 4, we may estimate v � 0:3 m2=s for the collisional case of
Fig. 4. This is lower than what we predict and find for the ion heat conductivity by noise. This was further
confirmed by running for saturation in the absence of collisions. Here, as shown in Fig. 4, v does not evolve
from its initial fluctuations and stays at a level of 0:5 m2=s. Therefore, the ion heat conductivity arising in the
collisional case of Fig. 4 must originate from the neoclassical ion heat conductivity. The heat conductivity by
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turbulence is not strong enough to be identified with the present parameters. Other runs made by flux-surface
averaging the potential to remove the noise and turbulent heat flux confirm the neoclassical origin of the phys-
ical ion heat flux in Fig. 4, where the results of such runs are also shown with and without collisions. No initial
heat flux is found with flux-surface averaged potential runs indicating the absence of the noise flux in such
runs. Here, in the collisional case, v � 1:3 m2=s at saturation is found. This is comparable to that obtained
without flux-surface averaging, after the noise contribution as detected in the initial phase of the run is
subtracted.

From Eq. (12), we calculate the analytical neoclassical ion heat conductivity of 1:2 m2=s for the present
parameters, which is in fair agreement with the present simulation result. In the case of Fig. 4, the radial elec-
tric field was found to be negative and in good agreement with the neoclassical estimate, as the noise flux was
smaller than the ion flux due to ion–ion collisions. On the other hand, in its collisionless run, the radial electric
field was positive and was determined by the non-ambipolarity of the noise flux. The closer investigation of
this effect is beyond the scope of the present paper and has been elaborated in more detail in [58].

5.4. Turbulent nonlinear behavior and numerical convergence

In Ref. [13] it was shown that in delta f codes vi may fail to saturate properly if the number of simulation
particles is too small. In Fig. 5, the radial profile of (a) vi, (b) heat flux and (c) temperature profile at time
125 ls (time average over 5 ls) with different numbers of simulation particles using FT-2 parameters (deute-
rium plasma) is shown. Here, the convergence of vi as the number of simulation particles is increased can be
clearly seen and 500 particles in a cell is shown to be enough for it. Also, in the simulation of GAM frequency
discussed in Section 5.1 this was found to be sufficient amount of particles. Unlike in Ref. [13], our simulations
show mainly an increase in the noise in vi when the number of test particles decreases while vi never fails to
saturate. This gives confidence in the new full f implicit scheme.

One way to reduce noise is to decrease the number of grid points keeping the number of test particles con-
stant thus increasing the number of particles in each cell. However, then we are not able to resolve all the inter-
esting modes anymore. With the present parameters, in absence of turbulence, the initial transient following
from an incomplete non-quiescent initialization was not found to be sensitive to the grid size. However, in the
presence of turbulence, the initial phase was very different in the cases with grids of 31� 200� 4 and
45� 300� 4. Thus, the grid size seems to have an effect to the transient at least when electric field is left to
influence the guiding center orbits of the ions.

Effect of grid size in poloidal direction to the saturation level is shown in Fig. 6. There, vi value at time
t = 175 ls averaged over 10 ls is shown for grid size values N v ¼ 50, 100 and 200 with 200 particles in each
cell using FT-2 parameters and kinetic electrons. Here, one can see that both N v ¼ 100 and 200 give very sim-
ilar results. However, N v ¼ 50 fails to give the same result at the outer radii where the grid size rDv ¼ 2pr=N v

is already of the order of 1 cm thus being unable to resolve modes. However, this is not a problem near the
inner edge where rDv ¼ 2–3 mm and all results are close to each other. One measure of accuracy in gyrokinetic
simulations is the ratio of grid size to the Larmor radius, xvq ¼ rDv=qi, which at the inner radius ðr ¼ 0:02 mÞ,
at the mid radius ðr ¼ 0:05 mÞ, and at the outer radius ðr ¼ 0:08 mÞ, gives xvq ¼ 2:7; 7:8 and 22 for N v ¼ 50,
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xvq ¼ 1:4; 3:9 and 11 for N v ¼ 100 and xvq ¼ 0:68; 2:0 and 5.4 for N v ¼ 200 in poloidal direction, respectively,
for characteristic temperatures shown in Fig. 5c. Here qi decreases (as T i becomes smaller) same time as r

increases making the ratio xvq increase strongly towards the outer edge. In radial direction Dr is typically con-
stant and for the present case we get Dr=qi ¼ 2:2; 2:5 and 4.3.

In Fig. 4, the collisional case of Cyclone base parameters was considered where the ion heat conductivity is
dominated by neoclassical transport mechanisms. To find the turbulent behavior, the Cyclone base case with
R=LTi ¼ 9:5 and with the scaled parameters rL ¼ 0:189 m, rR ¼ 0:448 m, a ¼ 0:625 m, R ¼ 1:7 m, B ¼ 1:9 T,
and I0 ¼ 590 kA was considered with n0 ¼ 4:5� 1017 m�3 and T 0 ¼ 2 keV. The gradient scale lengths were
Ln ¼ 0:76 m, LTe ¼ 100 m, and LTi ¼ 0:17 m. Like in the case of Fig. 4, deuterium ions were used. Here, the
collisionality and thus the neoclassical transport are very weak. At r ¼ r0, qi=a ¼ 0:005 in this case. Fig. 7
shows how the ion heat conductivity at r ¼ a=2 ðqs ¼ 1:4Þ saturates after some overshoot. The convergence
at the apparent saturation in spite of high noise level in the initial phase is found already with 1200 particles
per cell. Here, a grid of Nr ¼ 30, N v ¼ 200, N f ¼ 4 was applied. Interestingly, as suggested by the behavior at
large number of particles (4780 particles per cell), the initial noise flux seems to be not additive to the physical
heat flux at saturation, but rather appears to be replaced by the latter. This can be considered as a natural
consequence of upward cascading of unstable mode energy at saturation.

Further insight into the saturation is provided by Fig. 8 where the vi values obtained in Fig. 7 are arranged
as a function of R=LTi and time in due course of the simulation. The obtained vi evolution reflects the features
familiar from other (delta f) code results in similar cases [62]. After the overshoot and some steepening of the
T i radial profile, vi and T i profile relax towards the gyroBohm condition vLn=q2

s vTi � 1 for ion heat conduc-
tivity. Here, q2

s vTi=Ln 	 4:5 m2=s at saturation at r ¼ a=2 from the simulation results. One can compare this
vi value at R=LTi ¼ 9 with the value of vLn=q2

s vTi ¼ 1:3 obtained in another simulation (see Fig. 2 in [63]) in
the Cyclone base case where global delta f simulations (with adiabatic electrons) were performed. The impor-
tant role of the global simulation over the flux tube calculation was already stressed in the latter work.

It is remarked here that full f simulation of nonlinear turbulence saturation in an adiabatic limit of electrons
is problematic. This arises from the overly restricting constraints for particle and heat convection set by the
adiabatic condition of electron density [see, e.g. Eq. (10) or a corresponding model with hnii replaced by a fixed
ne0 in Eq. (10)] which in the presence of radial heat conduction by gradients and turbulence can lead in the full
f treatment to radially localized potential perturbations and to an unphysical shear of poloidal flows with a
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concomitant decay of ion heat conductivity and no reasonable saturation of it. The study of this problem is
beyond the scope of this paper and details of it will be presented in a separate publication.

It should also be noted that the simulated time in Fig. 7 is not long enough to conclusively regard vi as
saturated in the present kinetic electron case. Also, the overshoot appears to still grow with the highest number
of simulation particles. The latter observation can be understood on the basis of discussion at the end of Sec-
tion 5.2. The increase of the number of simulation particles improves the quality of initialization and reduces
the mode coupling with the noisy modes. Presently, the computing resources available for these runs do not
allow a more detailed investigation of these issues within the full f formalism.
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was the same in all cases. More detailed comparisons together with benchmarks against experimental diagnos-
tics and characterization of the turbulence will be presented in separate works.

With hydrogen ions (hydrogen was used in experiments), similar abrupt onset of strong Er enhancement
and suppression of vi was not observed at the ion temperatures below 300 eV on axis, using otherwise the same
parameters as in the deuterium case. However, at the high ion temperature range of the on-axis temperature
around 250–300 eV stronger GAM oscillations in the potential and in the sheared poloidal flow were produced
together with corresponding oscillations in vi. It is believed that the higher thermal velocity (at the same tem-
perature) for hydrogen makes the Mp � 1 threshold higher for Er. Also, the lighter mass of the hydrogen has
been found to lead to larger vi than with deuterium. Therefore, obtaining the conditions for poloidal rotation
speed-up neoclassically become more difficult to achieve for hydrogen. Further investigation of this needs a
more careful consideration of the effect of impurities and boundary conditions on the ion pressure profile. This
is beyond the scope of this paper and its study is deferred to future publications.

However, it is important to note that the plasma and transport evolution shown in Figs. 9–12 were con-
firmed in other ELMFIRE runs with variation of the grid size, number of simulation particles, and time step,
and with different recycling conditions for the escaping particles, all neutrals recycled either at the outer
boundary or deeper inside the plasma according to their ionization probability as described in Section 4.4.
The impurities were not found to affect qualitatively the evolution of the profile of the electrostatic potential
but some noticeable effects on radial transport coefficients were obtained [66]. The appearance of the knee-
point at r ¼ 0:06–0:065 m in the simulation was neither influenced by addition of charge-exchange process
for the ions or the ionization energy loss for the electrons near the edge.

The growth of U over the standard neoclassical prediction at sufficiently high pressure gradient is also
obtained (this takes place also with hydrogen) when flux surface averaged samples of ion and electron densities
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are used in the GK equation of U, i.e., when the turbulence is suppressed. This implies that the potential dif-
ference seen in Fig. 9 arises from neoclassical effects. This particularly strong poloidal E� B flow for low cur-
rent tokamaks was studied in detail in Ref. [55] with the earlier neoclassical version of ELMFIRE [2]. In
agreement with it, at high plasma current I > 35 kA the present ELMFIRE version with the GK turbulence
model produces a potential profile which follows the standard neoclassical prediction with no strong growth of
it, at least up to T ið0Þ ¼ 300 eV. Here, no transport reduction is observed at I > 35 kA in agreement with
experimental observations in FT-2. As already demonstrated in Fig. 1, the present ELMFIRE gives also
the standard neoclassical prediction when the ion temperature on axis stays well below 250 eV, in agreement
with the neoclassical simulations in [55].

7. Discussion

A first direct implicit ion polarization gyrokinetic full f particle-in-cell code has been written and is imple-
mented with kinetic electrons in global tokamak transport simulations. The code is applicable for calculations
of rapid transients and steep gradients in the plasma and is thus amenable, e.g. for studies of transport barrier
formation. The particle advancing involves the polarization drift in line with the asymptotic theory in [36].
This is made possible by recording the charge density change due to the ion polarization drift at each time
step. The use of Eq. (2) instead of standard gyrokinetic Poisson equation to solve the potential relaxes the
numerical problems in sampling hf i and its derivatives in constructing the coefficient matrix for this equation.
The difference-like treatment of the ion polarization keeps the potential equation fully implicit, and thus the
full f method can be applied in an straightforward manner. Although making the code more memory and
CPU time consuming than with the standard integrated GK polarization model, an efficient simulation of
the full particle distributions for quasineutrality has been achieved.

Another important feature of the present full f code is the fully implicit treatment of the electron parallel
nonlinearity. Stable performance with the whole drift-kinetic electron distribution with no significant numer-
ical heating has been obtained with time steps set somewhat smaller than set by the Courant condition of the
grid for the free streaming of electrons. Charge density responses in the gyrokinetic Poisson equation to both
the electron parallel nonlinearity and ion polarization drift are constructed directly and implicitly from the
particle coordinates during their advancement. This increases the statistical noise in the present particle full
f method as does also the consideration of the whole particle distribution in comparison to delta f method.

Numerical noise due to particle discreteness and its contribution to the transport fluxes and neoclassical
equilibrium have been found to be a subtle matter for full f particle simulations. The careful study in both
collisional and turbulent limit of transport has helped to separate and identify the contribution of noise,
and scaling rules for ensuring sufficient number of simulation particles for noise suppression have been found.

The present code has been validated against the linear predictions of the unstable mode growth rates and
frequencies both in adiabatic and electron kinetic Cyclone Base case. For electron kinetic calculations, the
goodness of the initialization is found to be important for the identification of the mode growths under the
noise. In the electron kinetic case, the evolution of the ion heat conductivity is found in agreement with the
neoclassical estimates at high collisionality. At weak collisionality, the heat conductivity by turbulence has
been studied. However, here the benchmarking with other electron kinetic codes is still ongoing. A first val-
idation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak
plasma is obtained. The agreement with the standard neoclassical prediction [51] is found for plasma pressure
gradients having Mp � 1 (see also [58]), but with steep ion temperature profiles making Mp � 1 according to
standard neoclassical prediction (i.e., the ion orbit width becomes of the order of the gradient scale length), a
significant enhancement of the radial electric field over the standard neoclassical prediction is observed. This
enhancement appears to arise from the so called rotation runaway effect predicted in [56] as indicated by the
work [67].

The neoclassical radial electric field together with the related GAM oscillations has been found to regulate
the turbulence and heat and particle diffusion levels in a large aspect ratio tokamak at low plasma current. The
simulations have been particularly encouraging, as many characteristics of neoclassical theory have been
reproduced, even in the presence of turbulence at appropriate limits, including the magnitude of radial electric
field, ion heat conductivity, and parallel conductivity (not discussed in the present work). The level of turbu-
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lent transport has been of the right order of magnitude in comparison to experimental measurements at FT-2,
although no characterization of the turbulence and comparison with experimental diagnostics has yet been
finished. Clear indication is found for turbulence to experience suppression at low plasma current and at suf-
ficiently strong ion heating in much the same way as in experiments. Kolmogorov-type power laws SðkÞ / k�a

with radially dependent a ¼ 1� 3 have been obtained from the simulated fluctuations [65]. Here, the spectral
behavior and cross-correlation studies of fluctuations from ELMFIRE through the growth of ion temperature
in FT-2 discharges support the picture of long wavelength turbulence suppression at the increase of the shear
in the poloidal flow.

Any direct comparison of the simulated radial electric field with the FT-2 experiments for the transport bar-
rier conditions has been hampered by the absence of an appropriate measurement system of the poloidal flow
velocity at FT-2 in the high plasma density and temperature range. A detailed comparison of the Doppler
reflectometry data from FT-2 plasma fluctuations in Ohmic discharges with the corresponding ELMFIRE
simulation data is in progress. It is expected that the present simulations of the poloidal flow and turbulence
characteristics for the FT-2 can be compared in near future with direct measurements of these quantities using
Doppler reflectometry and enhanced microwave scattering techniques.

The developed full f code can be presently used for electrostatic drift wave like transport simulations
together with the neoclassical mechanisms in tokamak plasmas, but a number of problems related to
boundary effects, all of them not discussed in the present work, and inclusion of the EM field with mag-
netic flutter, realistic magnetic configuration with non-circular non-concentric magnetic surfaces, and
sheath effects close to material surfaces have still to be resolved. Moreover, the present full f approach
is CPU time and memory consuming and its realization for large tokamaks cannot yet be considered
due to the large number of particles required for a reasonable statistics. Recently, several initiatives for
developing 5D global full f gyrokinetic Vlasov continuum codes for the toroidal plasma simulation have
been launched [23,26,68] with a motivation of avoiding the numerical noise inherent, in particular, in edge
plasma particle simulations. Together with the gyrokinetic continuum codes and other full f particle codes
under development, the present full f gyrokinetic particle approach can be cross-validated in future and
these tools may prove to be valuable, in particular, for the challenging tokamak scrape-off layer and ped-
estal plasma physics studies.
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